Analysis of the Gibbstown LNG Export Terminal Emissions from Cradle to Grave and Dashboard to Calculate Emissions of Similar Natural Gas Projects

This workbook analyzes the lifecycle emissions related to the Gibbstown LNG export terminal, including annual CO2e emissions related to daily facility operations and the upfront construction of the Wyalusing and Gibbstown facilities.

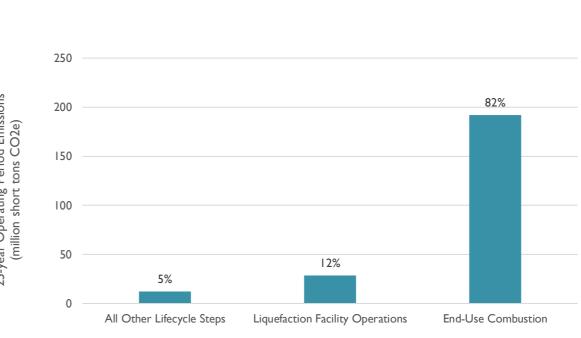
Authors:Jackie Litynski, Ellen Carlson, Jon Tabernero, and Pat Knight; Synapse Energy EconomicsLast Update:February 22, 2023

Disclaimer: Synapse Energy Economics, Inc. created the Gibbstown Emissions Analysis Workbook and Dashboard with the best available data as of February, 2023. The information Synapse used to complete this workbook was provided by publicly available information at the time of completion and Synapse makes no representations, warranties, or guarantees as to the accuracy, reliability, currency, or completeness of such information. Synapse makes commercially reasonable efforts to ensure that our work is complete, and up to date at the time it is provided; however, Synapse cannot account for future changes in scientific knowledge, industry standards of practice, or regulatory requirements. The opinions and analysis of Synapse may differ or be contrary to the opinions or analysis of other consultants, business areas or groups as a result of using different assumptions and criteria. Synapse cannot guarantee a particular outcome or result. This version of the workbook was last updated in February, 2023.

	Table of Contents							
Index	Sheet Title	Jump to Sheet						
	I. Title	Click here						
	2. Dashboard	Click here						
	3. Library	Click here						
	4. Gas Production	Click here						
	5. Pipeline and Compressor Station(s)	Click here						
	6. Construction	Click here						
	7. Liquefaction Facility	Click here						
	8. Domestic Transport	Click here						
	9. Export Facility	Click here						
	10. Sea Transport	Click here						
	II. Regasification	Click here						
	12. Foreign Transport to Combustion Faci	Click here						
	13. Combustion	Click here						

Acronym List

Index	Acronym	Definition
I. SCF		Standard Cubic Feet
2. LNG		Liquified Natural Gas
3. BOG		Boil-Off-Gas
4. MTPA		million tons per annum
5. BCF		Billion cubic feet
6. GWP		Global Warming Potential
7. CO2e		Carbon Dioxide Equivalent
8. IPCC		Intergovernmental Panel on Climate Change
9. AR4		IPCC Fourth Assessment Report
10. AR6		IPCC Sixth Assessment Report
II. GHG		Greenhouse Gas
12. PA		Pennsylvania
13. DEP		Department of Environmental Protection
14. CH4		Methane
15. N2O		Nitrous oxide
16. kg		kilogram
17. km		kilometer
18. MMbbl		Million barrels of oil
19. MMscf		Million standard cubic feet
20. bbl		Barrels of oil
21. NETL		National Energy Technology Laboratory
22. psig		pounds per square inch gauge (measurement of pressure)
23. lb		pounds
24. AP-42		US EPA's Compilation of Air Pollutant Emissions Factors
25. TPY		tons per year
26. gal		gallon
27. TEU-mi		Twenty-foot equivalent unit (TEU) per mile (a TEU is a commonly
		defined container unit for shipping cargo with volume of 20' length
		x 8'6" height x 8' width)
28. PHMSA		Pipeline and Hazardous Materials Safety Administration
29. NGP		Natural Gas Processing
30. VMT		vehicle miles travelled
31. PR		Puerto Rico
32. NG		Natural Gas
33. g		grams


Inputs and Results by Lifecycle Step

Below are the results and the inputs that users can update, organized by step in the natural gas lifecycle process. Users can update cells in blue to their own inputs. Cells not in blue should not be changed.

Analysis Results by Lifecycle Step

This table compiles the total emissions for each step in the natural gas lifecycle for the Gibbstown LNG Export Terminal.

Lifecycle Category	Lifecycle Step	Upfront Emissions	Ongoing Emissions	Total Emissions	Emissions as a Percent of Total
		short tons CO2e (20 year GWP)	short tons CO2e (20 year GWP)	short tons CO2e (20 year GWP)	%
Upfront Emissions	Facility Construction*	97,439	0	97,439	0.04%
	Gas Production	142,473	50,835	193,308	0.08%
Upstream Operating Emissions	Pipeline and Compressor Station	0	103,842	103,842	0.04%
	Liquefaction Facility*	0	28,459,993	28,459,993	12.22%
Midstream Operating Emissions	Domestic Transport	0	1,027,898	1,027,898	0.44%
	Export Facility*	0	384,850	384,850	0.17%
	Sea Transport	0	7,430,441	7,430,441	3.19%
	Regasification	0	2,891,046	2,891,046	1.24%
Downstream Operating Emissions	Foreign Pipeline Transport	0	180,211	180,211	0.08%
	End-use Combustion	0	192,138,030	192,138,030	82.50%
Total	Total	239,912	232,667,146	232,907,057	100.00%

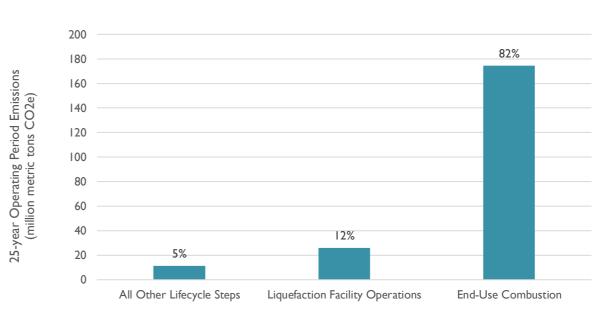
*Liquefaction facility and export facility construction emissions were estimated together, due to a lack of data for constructing just one of the components.

Inputs by Lifecycle Step

Below are the inputs that users can update, organized by step in the natural gas lifecycle process. Users can update cells in blue to their own inputs. Cells not in blue should not be changed.

Lifecycle Step	Input	Default or User Input	Default Value (Gibbstown)	User Input	Units	Notes
	LNG Exported	Default	128	64	bcf/year	This input describes how much LNG is exported from the corresponding export facility. It is used as the throughout of LNG for each stage in the lifecycle analysis. The default value is the proposed LNG export capabilities of the Gibbstown export terminal.
General	LNG Exported	Default	2.6	1.31	mtpa	This input describes how much LNG is exported from the corresponding export facility. It is used as the throughout of LNG for each stage in the lifecycle analysis. The default value is the proposed LNG export capabilities of the Gibbstown export terminal.
	Years for Ongoing Emissions	Default	25	I	years	This input is the years of ongoing emissions calculated for the lifecycle analysis. You may consider using the project's lifetime, so as to calculate the emissions over the projects entire life.
Gas Production			The Gas Production	n data scales with BCI	F, so there are no o	additional inputs here for users to update.
Pipeline and Compressor Stations (Domestic)	Miles of Transmission	Default	30	50	miles	This input is the miles of natural gas transmission lines from the wellhead and processing plants to the liquefaction facility. The default value is based on the approximate distance from wellheads in the Marcellus Shale area of Pennsylvania to the Wyalusing Liquefaction facility.
	Liquefaction construction duration	Default	29	35	months	Total project construction length. The default value is based on the Wyalusing liquefaction facility expected construction length.
Construction Emissions for Liquefaction and Export Facilities	Export construction duration	Default	15	10	months	Total project construction length. The default value is based on the Gibbstown export terminal expected construction length.
	Total volume of dredged material	Default	665,000	600,000	cubic yards	Total volume of dredged sediment during construction of new dock at Gibbstown export terminal. The default is based on the Gibbstown facility land development application.
Liquefaction Facility Annual	Facility annual emissions (operating and fugitive)	Default	1,107,782	1,138,400	short tons CO2e/year	Annual facility emissions, including operating and fugitive emissions. Default values is Wyalusing liquefaction facility annual total facility GHG emissions per year in AR4 GWP-100. User Input value is based on the additional questions in the section, below.
Operating Emissions	Should the annual facility emissions scale with BCF?	Yes	-	-	-	Asks users whether the non-default value should scale based on LNG export volume (which is set in the first section, above) or be a specific user input (defined based on the subsequent questions, below).
emissions update or a user is modeling a different liquefaction facility, they may put in a non-default value here. If users do not know their exact facility operating emissions,	What are the annual facility operating emissions (short tons CO2e)?	-	-	1,107,679	short tons CO2e/year	User inputs annual facility operating emissions into the blue highlighted cell as CO2e. The GWPs of the above below and this cell must be the same.
but know an updated BCF value, they can select "Yes" in cell D40 to automatically scale the emissions from the BCF input, above. If users have their own emissions	What are the annual facility fugitive emissions (short tons CO2e)?	-	-	2,572	short tons CO2e/year	User inputs annual facility fugitive emissions in the blue highlighted cell as CO2e. The GWPs of the above cell and this cell must be the same.
alue, they can select "No" in cell D40. Users can then input their liquefaction facility operating emissions (cells F41 and F42) and the corresponding GWP source or value	What is the data source for your GWP values for your annual facility emissions?	AR6 GWP-20	-	-	-	User selects the CH4 GWP data source used for the annual facility operating and fugitive emissions inputs. These two inputs must have the same GWP value. If the GWP source is not listed, select "other" and input it into the blue cell in the row below.
(D43).	CH4 GWP Value of Input Data	CH4	83	100	GWP	User inputs the CH4 GWP value into the blue highlighted cell, if using. The final GWP value used is displayed in black text. CO2 GWPs are always 1, so no input is needed.

	Train distance travelled	Default	255	200	miles	Distance LNG is transported by train. Default value is based on expected train route between Wyalusing liquefaction facility and Gibbstown export terminal, along existing train lines.
	Number of train cars	Default	150	50	train cars/day	Number of train cars per day transporting LNG. Default is based on approved PHMSA rail permit.
	Truck distance travelled	Default	174	200	miles	Distance LNG is transported by truck. Default is based on expected truck routes between Wyalusing liquefaction facility and Gibbstown export terminal.
	Number of trucks	Default	400	300	cars/day	Number of truck cars per day transporting LNG. Default is based on PA DEP application for Wyalusing facility.
	Rail percent of transports	Default	50%	50%	%	Percent share of LNG transported by rail. Default assumes that half of the LNG is transported by truck and half by train, since no Gibbsotown applications have proposed a specific transportation split. The percent transported by train and truck must sum to 100%.
Domestic Transport by Train and Truck	Truck percent of transports	Default	50%	50%	%	Percent share of LNG transported by truck. Default assumes that half of the LNG is transported by truck and half by train, since no Gibbsotown applications have proposed a specific transportation split. The percent transported by train and truck must sum to 100%.
	Number of valves	Default	1,059	1059.0	valves	User inputs automatically scaled based on the total number of train and truck cars transporting LNG daily. Users can also input their own values for each input.
	Number of pump seals	Default	0	0.0	pump seals	User inputs automatically scaled based on the total number of train and truck cars transporting LNG daily. Users can also input their own values for each input.
	Number of connectors	Default	962	962.0	connectors	User inputs automatically scaled based on the total number of train and truck cars transporting LNG daily. Users can also input their own values for each input.
	Number of other leak sources	Default	0	0.0	sources	User inputs automatically scaled based on the total number of train and truck cars transporting LNG daily. Users can also input their own values for each input.
	Number of vapor recovery compressors	Default	0	0.0	compressors	User inputs automatically scaled based on the total number of train and truck cars transporting LNG daily. Users can also input their own values for each input.
	Emissions source scale factor: 5 flare sources	Default	8%	25%	%	Scaling factor for flare emissions, compared to a Canadian LNG facility Assumes approximately 2 flares at Gibbstown site. User Input based on whether LNG throughput volume is set to "User Input" above.
Export Facility	Emissions source scale factor: fugitive sources	Default	8%	50%	%	Scaling factor for fugitive sources, compared to a Canadian LNG facility. User Input based on whether LNG throughput volume is set to "User Input" above.
	Emissions source scale factor: domestic marine shipping activities	Default	8%	20%	%	Scaling factor for marine shipping emissions, compared to a Canadian LNG facility. User Input based on whether LNG throughput volume is set to "User Input" above.
	Sea Travel Distance #I	Default	16,000	13,000	km	Total roundtrip distance from export facility to Destination #1 import terminal. Default Destination #1 is from Gibbstown export facility to Ireland. Default distance was estimated using ArcGIS.
Sea Transport	Sea Travel Distance #2	Default	I I,400	10,000	km	Total roundtrip distance from export facility to Destination #2 import terminal. Default Destination #2 is from Gibbstown export facility to Puerto Rico. Default distance was estimated using ArcGIS.
Sea Transport	Percent of LNG to Destination #I	Default	50%	60%	%	Proportion of exported LNG transported to Destination #1. Default assumes that 50% of the gas is exported to Ireland and the other 50% is exported to Puerto Rico.
	Percent of LNG to Destination #2	Default	50%	40%	%	Proportion of exported LNG transported to Destination #2. Default assumes that 50% of the gas is exported to Ireland and the other 50% is exported to Puerto Rico.
Regasification Facility	-	-	-	-	-	There are no specific inputs for the Regasification Facility stage, as these scale with the volume of LNG exported.
Foreign Pipeline and	Miles of transmission in Destination #I	Default	40	60	miles	Pipeline distance from import terminal to regasification. Default assumption is based on transit of gas via pipeline from the import terminal to a nearby power plant.
Compressor Stations	Miles of transmission in Destination #2	Default	20	30	miles	Pipeline distance from import terminal to regasification. Default assumption is based on transit of gas via pipeline from the import terminal to a nearby power plant.
Combustion			The Combustion d	ata scales with BCF	^E , so there are no add	litional inputs here for users to update.


Inputs and Results by Lifecycle Step

Below are the results in metric tons, organized by step in the natural gas lifecycle process. To update inputs, see the "Dashboard_ShortTons" worksheet.

Analysis Results by Lifecycle Step

This table compiles the total emissions for each step in the natural gas lifecycle for the Gibbstown LNG Export Terminal.

Lifecycle Category	Lifecycle Step	Upfront Emissions	Ongoing Emissions	Total Emissions	Emissions as a Percent of Total
		metric tons CO2e (20 year GWP)	metric tons CO2e (20 year GWP)	metric tons CO2e (20 year GWP)	%
Upfront Emissions	Facility Construction*	88,420	0	88,420	0.04%
Liseture Oscurting Emissions	Gas Production	129,285	46,130	175,415	0.08%
Upstream Operating Emissions	Pipeline and Compressor Station	0	94,231	94,231	0.04%
	Liquefaction Facility*	0	25,825,765	25,825,765	12.22%
Midstream Operating Emissions	Domestic Transport	0	932,757	932,757	0.44%
	Export Facility*	0	349,229	349,229	0.17%
	Sea Transport	0	6,742,687	6,742,687	3.19%
	Regasification	0	2,623,454	2,623,454	1.24%
Downstream Operating Emissions	Foreign Pipeline Transport	0	163,531	163,531	0.08%
	End-use Combustion	0	174,353,929	174,353,929	82.50%
Total	Total	217,706	211,131,711	211,349,417	100.00%

*Liquefaction facility and export facility construction emissions were estimated together, due to a lack of data for constructing just one of the components.

Library

This sheet contains general data sources and information relevant to multiple production steps

Table I. IPC	C AR6 Global Warming	Potential, Used fo	or Final GWP-20 Calculations						
Notes:	These values are used to	These values are used to calculate the final CO2e emissions for the Gibbstown results and Dashboard results.							
	Based on IPCC AR6, the	ese GWPs are used	to calculate CO2e emissions in this workbook.						
	The CH4 value used is t	the "CH4-fossil" valu	ue, not the "CH4-non fossil" value.						
Source(s):	Forster, P., T. Storelvmo, K	K. Armour, W. Collins,	, JL. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth's Energy Budget,						
Table 7.15	Emissions metrics for sel	ected species: glo	obal warming potential (GWP), global temperature-change potential (GTP).						
Gas	GWP-20 GW	′P-100							
CO2	I	I							
CH4	82.5	29.8							
N2O	273	273							

Table 2. EP	A Global Warming Potential, Used for Converting Data Back to Tons of CH4
Notes:	These GWPs are used to back calculate the total GHGs of CH4 from the liquefaction facility emissions. We do not use these to calculate the final Gibbstown or
	Dashboard results.
	Assuming this GWP used in PA DEP, based on Jordan Cove EIS. This GWP is used to back calculate short tons of CH4 and N2O from CO2e in various steps in the
	natural gas process. The GWPs from IPCC AR6, above, are the GWP values used throughout this workbook.
Source(s):	US Environmental Protection Agency. Inventory of US Greenhouse Gas Emissions and Sinks. 2021. Available at: https://www.epa.gov/sites/production/files/2021-04/documents/us-ghg-
	inventory-2021-main-text.pdf
Table ES-I:	Global Warming Potentials (100-Year Time Horizon) Used in this Report
Gas	GWP-100
CO2	I
CH4	25
N2O	298

Table 3. IPCC	AR4 Global \	Varming Poten	tials, Used	for Converting Data Back to Tons of CH4				
Notes:	This table is	used to back calcu	late the tot	al GHGs of CH4 from the regasification facility emissions.				
Source:	Intergovernme	Intergovernmental Panel on Climate Change. 2007. "IPCC Fourth Assessment Report: 2.10.2 Direct Global Warming Potentials." Available at:						
	https://archive	e.ipcc.ch/publication	s_and_data/	ar4/wg1/en/ch2s2-10-2.html				
	20-year	100-year						
Carbon Dioxide		I	I					
Methane		72	25					
Nitrous oxide		289	298					

Table 4. Natural Gas Conversions

Converting natural gas between metric tons/tonnes and cubic feet

Source(s):

Notes:

Hofstrand, D. Natural Gas and Coal Measurements and Conversions. Iowa State University. Available at: https://www.extension.iastate.edu/agdm/wholefarm/html/c6-89.html

Energy Transfer. Properties and Characteristics of LNG. Available at: https://lclngmessenger.energytransfer.com/InfoPost/resources/documents/PropertiesofLNG.pdf. Shively, B. Understanding Liquefied Natural Gas (LNG) Units. Energy Dynamics. Available at: https://www.enerdynamics.com/Energy-Currents_Blog/Understanding-Liquefied-

	Natural-Gas-LNG-Units.aspx
	I metric ton liquefied natural gas (LNG)
48,70	0 cubic feet of natural gas
	I gallon liquefied natural gas (LNG)
81	5 cubic feet of natural gas
	I million metric tons per year (MTPA LNG)
4	9 BCF per year (gas)
	I BCF natural gas
I.06.E+0	19 MJ natural gas
Para second s	

Table 5. Unit Conver	rsions	
Notes:		
Source(s): Butch	er, Kenneth S, Linda D Crown, and Elizabeth J Gentry. 2	006. "The International System of Units (SI) - Conversion Factors for General Use." National Institute of Standards and
Techn	nology. https://doi.org/10.6028/NIST.SP.1038.	
Conversion between kg,	, metric tons, and short tons	Conversion between cubic yards and cubic meters
1000 kg		I cubic yard
l metric ton		0.76455 cubic meters
I.102 short	t tons	
Conversion between km	n and miles	Pounds to Short Tons
l km		2000 pounds
0.621371 miles		l short ton

Table 6.	Days per Year
Notes:	
Source(s):	
	365.25 days/year

Upfront Construction

This sheet calculates the GHG emissions related to construction of the Wyalusing Liquefaction facility and Gibbstown Logistics Center.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	short tons CO2e/year	short tons CO2e/year	short tons CO2e/year
Gas Liquefaction Facility, 20-year GWP	97,439	0	97,439
Gas Liquefaction Facility, 100-year GWP	97,070	0	97,070

Section B. Data and Calculations

Section BI. Upfront Emissions Da	Section BI. Upfront Emissions Data and Calculations									
Construction:										
Input	Value	Units	Notes	Source						
Total project construction duration		44 months	Combined Gibbstown a	and Wyalusing construction perio						
LNG Exported		2.60 mpta								
Capacity-weighted average monthly construction		712 (short tons CO2e/month)/mpta								
Average construction emissions per month		1,852 short tons CO2e/month								
Total estimated construction emissions		81,475 short tons CO2e	AR4 100 year GWP							
Construction emissions, CO2		80,867 short tons CO2								
Construction emissions, CH4		6.57 short tons CH4								
Construction emissions, N2O		1.49 short tons N2O								
Total construction emissions, all GHG		81,816 short tons CO2e	20 year GWP AR6							
Total construction emissions, all GHG		81,470 short tons CO2e	100 year GWP AR6							

Section B2. Upfront Emissions Data and Calculations: Dredging Emissions

Dredging:				
Input	Value	Units	Notes	Source
Total dredged material	665,0	00 cubic yards		
Total dredged material	508,4	26 cubic meters		
Carbon content of dredged soil	0.0	13 short tons CO2/cubic meter		
Carbon emissions from dredging	6,83	3 short tons CO2	This is applicable t	to both 20-year and 100-year GV

Section B3. Upfront Emissions Data and Calculations: Concrete Emissions

Value	Units	Notes	Source
16,120	cubic yards concrete/mtpa		
2.60	mtpa		
41,91	cubic yards of concrete		
418	lbs CO2/cubic yard		
0.21	short tons CO2/cubic yard		
8,754	short tons CO2		
0.02	lbs CH4/cubic yard		
0.00001	short tons CH4/cubic yard		
0.44	short tons CH4		
8,791	short tons CO2e	20 year GWP AR6	
8,767	short tons CO2e	100 year GWP AR6	
	16,120 2.60 41,911 418 0.21 8,754 0.02 0.00001 0.44 8,791	16,120cubic yards concrete/mtpa2.60mtpa41,911cubic yards of concrete418lbs CO2/cubic yard0.21short tons CO2/cubic yard8,754short tons CO20.02lbs CH4/cubic yard0.00001short tons CH4/cubic yard0.44short tons CH4	16,120cubic yards concrete/mtpa2.60mtpa41,911cubic yards of concrete418lbs CO2/cubic yard0.21short tons CO2/cubic yard8,754short tons CO20.02lbs CH4/cubic yard0.00001short tons CH4/cubic yard0.44short tons CH48,791short tons CO2e20 year GWP AR6

Section C. Sources

Section CI. Gibbstown Logis	tics Center Description (from site	plan)						
Sources:	Delaware River Partners, LLC. November 2019. "Application for Land Development." Av							
	Delaware River Partners, LLC – Gibbstow	n Logistics Center Dock 2. 2020. Delaware F	٩ive					
Note:								
Gibbstown Logistics Center Descript	ion (From Site Plan)							
Component	Value	Unit						
New dock construction time		15 months						
LNG Exported from Gibbstown		128 bcf						
LNG Exported from Gibbstown		2.6 mpta						
Total volume of dredged sediment for nev	v dock	665,000 cubic yards						

Section C2. Wyalusing Liquefaction Project Description

Source:	Engineering, Procurement, and Constructio	n Agreement (January 2019) Available at: http
Note:		
Component	Value	Unit
Total disturbed acreage		119.4 acres
Site area		219 acres
Project construction duration		29 months

Section C3. Operating and Construction Data for US LNG Facilities

Sources:	Federal Energy Regulatory Commission. 2019. "Jacksonville Project Final Environmental Impact Statement." Available at: https://www.ferc.gov/sites/default/files/2020-05/04-12-19-FEIS.pdf.; Federal Energy Re											
Note:												
					Average Monthly	Average Monthly						
					Construction	Construction Emissions						
			LNG Terminal Construction		Emissions (short	per Capacity (short tons						
		Operating GHG Emissions	GHG Emissions (short tons	Construction	tons	CO2e/month/mtpa)						
Facility	Export Capacity (mtpa)	(short tons CO2e/yr)	CO2e)	Length (months)	CO2e/month)		Source					
Eagle Jacksonville	I	112,265	18,135	42	432	432	Federal Energy Regulatory Com					
Texas LNG Terminal	4.5	613,901	143,197	44	3,254	723	Federal Energy Regulatory Com					
Cove Point	4.85	2,030,998	168,258	48	3,505	723	Federal Energy Regulatory Com					
Gulf LNG	5.4	2,885,787	205,607	60	3,427	635	Federal Energy Regulatory Com					
Corpus Christi LNG	8.24	3,340,000	622,135	72	8,641	1,049	Federal Energy Regulatory Com					

Section C4. Lake Charles LNG Liquefaction Facility Construction Emissions

Source: Federal Energy Regulatory Commission. 2015. "Final Environmental Impact Statement - Lake Charles Liquefaction

Note: Table 4.11.1-7: Liquefaction Facility Construction Emissions Construction Activity

Construction Activity	CO2 (short tons)	CH4 (short tons)	N2O (short tons)	CO2e (short tons)
Worker commuting	5,290	1.9	0.2	5,401.9
Construction dirt work	51,388	3	I	51,735.92
Construction plant work	225,184.0	18	4	226,970

Section C5. Construction Emission Composition Ratio Calculations Source: Section C4. above.

Source:	Section C4, above.		
Note:			
	Total (short tons)	Total (short tons CO2e)	Percent of total CO2e
CO2	281,862	281,862	99.3%
CH4	23	573	0.2%
N2O	5	1,550	0.5%
Total CO2e		283,984	100%

Section C6. Construction, Water usage, and Concrete Data for US LNG Facilities

Sources:	MTPA and Concrete volume (from: Federal Energy Regulatory Cor	mmission. 2019. "Jacksonville Proje	ect Final Environmenta
Note:				
Facility	Export Capacity (mtpa)	Concrete (cubic yards)	Concrete per mtpa	Source
Eagle Jacksonville	I	10,000	10,000	MTPA and Concrete
Cove Point	4.85	85,000	17,526	MTPA Volume from
Cameron LNG facility	12	250,000	20,833	MTPA Value from: (
Average			16,120	

Source: Delaware Estuary Benthic Inventory. 2016. "Bay Bottom Inventory - Total Organic Carbon

Source: Delaware Estuary E	Benthic Inventory. 20	16. "Bay Bottom Inventory - Total Organic Carbon				
"Dredge Material F	Placement and Behav	ior." Available at: http://www.mgs.md.gov/coastal_ge				
Note:						
Component	Value	Unit				
Average total organic carbon (TOC) concentration in sediment sample	es	12342 mg TOC/kg				
Carbon concentration percentage		1.23% percent concentration of TOC				
Average total organic carbon (TOC) concentration in sediment sample	es	0.0136 short tons/kg				
Density of dredged sediment		1.2 g/cubic centimeter				
Density of dredged sediment		1200 kg/cubic meter				
Carbon concentration by volume in sediment		14810400 mg/cubic meter				
Carbon concentration by volume in sediment		0.013 short tons/cubic meter				

Section C8. Emissions from Concrete Production

Source:	Prusinski, Jan	R, Medgar L Marceau, and M	lartha G VanGeem. n.d. "LIFE CY	YCLE INVENTO	ORY OF SLAG	CEMENT CO	DNCRETE." https://www.e	cocem.co.uk/v	wp-content/uploads/2016/08/EC	CL009_Life_Cycle_	Inventory_of_G	GBS_Cement_Concrete.pdf.								
Note:	Since we don't know which type of concrete will be used, we are assuming an average of the values listed below.																			
US Cust. Units (lb/cubic yard)																				
28 day comp. strength			3,000 psi	5,000 psi			7,500 psi				10,000 psi		Unspecified Average			erage				
Mixture	R-3-0	R-3-35	R-3-50		R-3-20F	R-5-0	R-5-35		R-5-50	P-7-0	P-7-35	P-7-50	P-10-0		P-10-35 P-10-50	B-0	B-3	35 B-50	<u>ر</u>	
CO2		385	269	220)	318	555	382	307	81	2	550	438	723	492	393	367	260	213	417.75
SO2		0.918	0.688	0.591		0.77	1.289	0.947	0.799	1.8	5	1.33	1.11	۱.66	1.2	I	0.89	0.678	0.585	1.02
NOX		1.201	0.865	0.723	}	1.008	1.693	1.19	0.975	2.4	2	1.66	1.34	2.17	1.51	I.22	1.13	0.823	0.688	1.29
VOC		0.053	0.048	0.046		0.05	0.062	0.055	0.051	0.07	3	0.061	0.056	0.071	0.06	0.056	0.051	0.046	0.044	0.06
		0 5 42	0.436	0.391		0 477	0.714	0.555	0.407	0.95	-	0.717	0.414	0.00	0.668	0.577	0.515	0.415	0.272	0.50

СО	0.543	0.436	0.391	0.477	0.714	0.555	0.487	0.957	0.716	0.614	0.88	0.668	0.577	0.515	0.415	0.373	0.58
CH4	0.019	0.015	0.013	0.017	0.026	0.02	0.017	0.037	0.027	0.022	0.033	0.024	0.021	0.018	0.014	0.013	0.02
Particulate matter	1.83	1.52	1.39	1.64	I.64	1.82	1.62	2.89	2.19	1.89	2.69	2.07	1.81	1.71	I.42	١.3	I.84
Port. Cement kiln dust	19.6	12.7	7.8	15.7	15.7	19.1	14.7	44.2	28.7	22.1	39	25.4	19.5	18.2	11.9	9.1	20.21
Slag reject	0	0.224	0.173	0	0	0.338	0.259	0	0.508	0.391	0	0.449	0.345	0	0.21	0.161	0.19

Gas Production

This sheet calculates the GHG emissions related to gas production for the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	short tons CO2e	short tons CO2e	short tons CO2e
Gas Production, 20-year GWP	142,473	2,033	144,506
Gas Production, 100-year GWP	51,463	734	52,197

Section B. Data and Calculations

Section B1. Natural Gas Thre	oughput				
Description	Value		Units	Notes	Source
Natural gas input into pipeline		128	bcf/year		
Section B2. Production Emis	sions Data an	d C	alculations		
Description	Value		Units	Notes	Source
Well drilling		52	kg CH4/well	upfront emissions	Littlefield et al., 2019.
Compressor blowdowns		77	kg CH4/compressor	ongoing emissions	Littlefield et al., 2019.
Compressor blowdowns	(0.078	compressors/well	ongoing emissions	Littlefield et al., 2019.
Pressure relief valve (PRV) upsets		0.70	kg CH4/PRV	ongoing emissions	Littlefield et al., 2019.
Pressure relief valve (PRV) upsets		2.4	PRV/well	ongoing emissions	Littlefield et al., 2019.
Vessel blowdowns		١.6	kg CH4/vessel	ongoing emissions	Littlefield et al., 2019.
Vessel blowdowns		0.93	vessel/well	ongoing emissions	Littlefield et al., 2019.
Wells	1	,205	wells/year	upfront emissions	
Drilling Emissions	62	,684	kg CH4/year	upfront emissions	
Compressor blowdowns	7	,240	kg CH4	ongoing emissions	
Pressure relief valve (PRV) upsets	2	,025	kg CH4	ongoing emissions	
Vessel blowdowns	1	, 79 4	kg CH4	ongoing emissions	
Total Upfront Production	62	,684	kg CH4/year	upfront emissions	
Total Upfront Production		69	short tons CH4/year	upfront emissions	
Total Upfront Production	142	,473	short tons CO2e (20 year)	upfront emissions	
Total Upfront Production	51	,463	short tons CO2e (100 year)	upfront emissions	
Total Ongoing Production		,059	kg CH4	ongoing emissions	
Total Ongoing Production		12	short tons CH4	ongoing emissions	
Total Ongoing Production	1	,005	short tons CO2e (20 year)	ongoing emissions	
Total Ongoing Production		363	short tons CO2e (100 year)	ongoing emissions	

Section B3. Gathering Emissions Data and Calculations

0				
Description	Value	Units	Notes	Source
Mishaps	14	kg CH4/mile	ongoing emissions	Littlefield et al., 2019.
Mishaps	81	wells/facility	ongoing emissions	Littlefield et al., 2019.
Mishaps	0.67	/ miles/well	ongoing emissions	Littlefield et al., 2019.
Production per well (national average)	290,715	cf/well/day	ongoing emissions	US EIA, 2022
Production days per year	365.25	i days/year	ongoing emissions	
Production per well per year	106,183,654	cf/well/year	ongoing emissions	US EIA, 2022
Production per well per year	0.11	bcf/well/year	ongoing emissions	
Natural gas produced	128	B bcf/year	ongoing emissions	
Wells used	1,205	wells used/year	ongoing emissions	
Mishaps, miles	807.66	miles/year	ongoing emissions	
Mishaps, emissions	١١,307.20	kg CH4	ongoing emissions	
Mishaps, emissions	12	short tons CH4	ongoing emissions	
Mishaps, emissions	I,028	short tons CO2e (20 year)	ongoing emissions	
Mishaps, emissions	371	short tons CO2e (100 year)	ongoing emissions	

Section C. Sources

Source:	US Energy Information Adminis	stration. January 2022. "US Oil a	and Natural Gas Wells by Pro	oduction Rate: Appendix B." Av	ailable at: https://	www.eia.gov/pet	roleum/wells/											
Notes:	-				·	. .												
Table B45. Pennsylvania o	oil and gas well summary statistics, 2	.020																
	Oil wells							Gas wells							Total wells	5		
			Annual			Annual				Annual			Annual			Annual	Annual	
			oil		Oil rate	gas	Gas rate			gas		Gas rate	oil	Oil rate		oil	gas H	lorizonta
Prod. rate bracket	number of oil	percent of oil	prod.	percent of oil	per Well	prod.	per well	number of gas rce	nt of gas	prod. rco	ent of gas	per well	prod.	per well	number of total	prod.	prod.	we
BOE/d)	wells	wells	(MMbbl)	prod.	(b/d)	(Bcf)	(Mcf/d)	wells	wells	(Bcf)	Prod.	(Mcf/d)	(MMbbl)	(b/d)	wells	(MMbbl)	(Bcf)	coun
I	8,614	95.9	0.4	41.9	0.1	0.9	0.3	48,462	69.5	36.8	0.5	2.2	0.3	0.0	57,076	0.7	37.7	8
1–2	128	I.4	0.0	5.4	1.0	0.1	١.6	8,387	12.0	25.0	0.4	8.2	0.0	0.0	8,515	0.1	25.1	3
2–4	3	١.5	0.1	١١.3	2.2	0.2	4.1	2,284	3.3	12.8	0.2	15.6	0.0	0.0	2,415	0.1	13.0	3
1–6	15	0.2	0.0	I.7	3.7	0.0	9.1	350	0.5	3.6	0.1	28.6	0.0	0.0	365	0.0	3.6	3
5–8	15	0.2	0.0	0.9	5.1	0.0	10.5	166	0.2	2.2	0.0	40.8	0.0	0.1	181	0.0	2.2	3
8–10	52	0.6	0.2	١7.6	8.3	0.1	2.7	94	0.1	١.8	0.0	53.4	0.0	0.0	146	0.2	١.8	2
Subtotal <=10	8,955	99.7	0.7	78.8	0.3	1.2	0.5	59,743	85.6	82.1	1.2	3.9	0.3	0.0	68,698	1.0	83.4	24
10-12	22	0.2	0.1	10.3	11.4	0.0	2.5	57	0.1	١.3	0.0	65.0	0.0	0.0	79	0.1	١.3	2
12–15	I	0.0	0.0	0.0	10.6	0.0	0.0	57	0.1	١.6	0.0	79.9	0.0	0.2	58	0.0	١.6	2
Subtotal <=15	8,978	99.9	0.8	89.1	0.3	1.3	0.5	59,857	85.8	85.0	1.2	4.0	0.3	0.0	68,835	1.1	86.3	29
15–20	I	0.0	0.0	0.6	14.9	0.0	5.5	101	0.1	3.7	0.1	103.2	0.0	0.1	102	0.0	3.7	6
20–25	0	0.0	0.0	0.0	0.0	0.0	0.0	96	0.1	4.6	0.1	134.8	0.0	0.2	96	0.0	4.6	7
25–30	0	0.0	0.0	0.0	0.0	0.0	0.0	123	0.2	7.3	0.1	164.3	0.0	0.3	123	0.0	7.3	11
30–40	7	0.1	0.1	10.3	36.0	0.0	8.8	318	0.5	23.9	0.3	209.6	0.0	0.3	325	0.1	23.9	30
40–50	0	0.0	0.0	0.0	0.0	0.0	0.0	403	0.6	38.9	0.5	268.5	0.1	0.5	403	0.1	38.9	39
50–100	0	0.0	0.0	0.0	0.0	0.0	0.0	2,030	2.9	321.9	4.5	437.2	0.5	0.7	2,030	0.5	321.9	2,00
Subtotal <=100	8,986	100.0	0.9	100.0	0.3	1.3	0.5	62,928	90.2	485.3	6.8	21.7	1.0	0.0	71,914	1.9	486.5	3,26
100–200	0	0.0	0.0	0.0	0.0	0.0	0.0	2,352	3.4	738.1	10.3	869.3	0.7	0.8	2,352	0.7	738.1	2,34
200–400	0	0.0	0.0	0.0	0.0	0.0	0.0	2,020	2.9	1,223.4	17.1	1,683.3	1.1	١.5	2,020	1.1	1,223.4	2,01
400–800	0	0.0	0.0	0.0	0.0	0.0	0.0	١,352	۱.9	1,588.6	22.2	3,314.2	0.7	١.4	1,352	0.7	I,588.6	١,35
300-1,600	0	0.0	0.0	0.0	0.0	0.0	0.0	650	0.9	1,396.0	19.5	6,600.9	0.7	3.5	650	0.7	1,396.0	64
,600–3,200	0	0.0	0.0	0.0	0.0	0.0	0.0	375	0.5	1,280.8	١7.9	12,742.6	0.6	5.7	375	0.6	1,280.8	37
3,200–6,400	0	0.0	0.0	0.0	0.0	0.0	0.0	106	0.2	459.5	6.4	24,607.7	0.0	0.0	106	0.0	459.5	10
5,400–12,800	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	
> 12,800	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	
Total	8,986	100.0	0.9	100.0	0.3	1.3	0.5	69,783	100.0	7,171.7	100.0	290.2	4.8	0.2	78,769	5.7	7,173.0	10,10

Source: State and federal administrative oil & gas data thru Enverus

The total volumes shown in the distribution tables may not exactly agree with other related data, including other EIA sources. Major reasons for differences include the timing of updates from state and commercial sources, the summed production of available well-level production data versus state-level aggregations of production, and how a well is defined and which entities are counted and summed.
 Wells counted for this report include sidetracks, completions, recompletions, and leases. This definition includes all oil and natural gas producing entities available in the Enverus database.
 For late reporting states, the last year of available data is repeated for missing years For example, Kentucky 2019 data are used for 2017 through 2017 through 2020. Missouri 2019 data are used for 2020. Tennessee 2016 data are used for 2017 through 2020. All years are missing for Illinois and Indiana. Tennessee 2016 data are used for 2017 through 2020. All years are missing for Illinois and Indiana.
 To be consistent between states a GOR of 6,000 (cf/bbl) for each years production was used to define oil versus gas wells. If the GOR was less (greater) than 6,000 (cf/bbl) the well was classed an oil (gas) well.
 To determine production rate brackets for the first and last year of a well's life, we divided the annual production by the number of days in the productive months.
 For the middle years, we divided the annual production by 365 or 366 days.
 Natural gas volumes have been converted from the various state pressure bases to the federal base (14.73 pounds per square inch absolute).

Data available as of November 2021.

Section C2. Source for Exhibit 3-16. GHGI Emission and Activity Factors and Corresponding Natural Gas Throughput

Littlefield, J., S. Roman-White, D. Augustine, A. Pegallapati, G. G. Zaimes, S. Rai, G. Cooney, and T. J. Skone. April 2019. "Life Cycle Analysis of Natural Gas Extraction and Power Generation." National Energy Technology La

Source: Notes:

Exhibit 3-16. GHGI Emission and Activity Factors and Corresponding Natural Gas Throughput

					Emissions		Natural Gas Throughput				
Stage (or substage)	Emission Source	Vent	Fugitive	GHGI Emission Factor	Units (annualized)	Activity Factor	Units	Throughput	Units		
	Well drilling	•		52	kg CH4/completed well	*	completed wells	EUR*	Bcf/well-life		
	Compress blowdowns			77	ha Citte (compression	0.078	compressors/well	Annual meduation *	Maf /haain wa		
	Compressor blowdowns	•		11	kg CH4/compressor	*	wells	Annual production*	Mcf/basin-yr		
Production	PRV (pressure relief valve)			0.70		2.4	PRV/well	A	1 1 5 1 1 1 1 1 1		
	upsets	•		0.70	kg CH4/PRV	*	wells	Annual production*	Mcf/basin-yr		
						0.93	vessels/well				
	Vessel blowdowns	•		1.6	kg CH4/vessel	*	wells	Annual production*	Mcf/basin-yr		
						81	wells/facility				
Gathering	Mishaps	•		14	kg CH4/mile	0.67	miles/well	Annual production*	Mcf/basin-yr		
Processing	Pneumatics	•		3,173	kg CH4/facility	1	facilities	33.6	Bcf/facility-yr		
Transmission	Dehydrator vents	•		1.8	kg CH4/MMscf NG dehydrated	1.19E+06	MMscf NG	28.2	Tcf transmission		
Transmission Pipeline	Pipeline fugitives		•	1,120	kg CH4/mile	301,257	miles	28.2	Tcf transmission		
Storage	Dehydrator vents	•		2.3	kg CH4/MMscf dehydrated	1.85E+06	MMscf dehydrated	9.24	Tcf capacity		
C C	Station venting	•		84,000	kg CH4/station	*	Bcf station capacity	9.24	Tcf capacity		
	Customer meters		•	1.5	kg CH4/meters	5.43E+07	meters	13.9	Tcf distributed		
	(residential) Customer meters			9.7	kg CH4/meter	5.66E+06	meters	13.9	Tcf distributed		
Distribution	(commercial/industrial) PRV (pressure relief valve)										
Distribution	upsets	•		1.00	kg CH4/mile	1.28E+06	miles	13.9	Tcf distributed		
	Pipeline blowdowns	•		2.00	kg CH4/mile	2.19E+06	miles	13.9	Tcf distributed		
	Mishaps (dig ins)	•		31	kg CH4/mile	2.19E+06	miles	13.9	Tcf distributed		

* In some instances, throughput is variable across basins and extraction technologies. This variability is based on NETL's stratification of the data by basins and extraction

technologies. Variability in activity factors are based on stratification of GHGRP data as shown in **Exhibit 3-8** through **Exhibit 3-15**, and variability in natural gas throughputs are

based on stratification of DI Desktop data.

Section C3. Natural Gas Loss Rate From Extraction, Processing, and Transmission										
Page 72. Available at: https://www.energy.gov/sites/prod/files/2019/09/f66/Life%2										
Description										
Loss rate from extraction through transmission of natural gas										

Pipeline and Compressor Station(s)

This sheet calculates the GHG emissions related to gas transportation via pipelines from natural gas wells in Pennsylvania to the Wyalusing liquefaction facility for the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	metric tons CO2e/yr	metric tons CO2e/yr	metric tons CO2e/yr
Pipeline and Compressor Station(s), 20-year GWP	0	4,154	4,154
Pipeline and Compressor Station(s), 100-year GWP	0	I,500	١,500

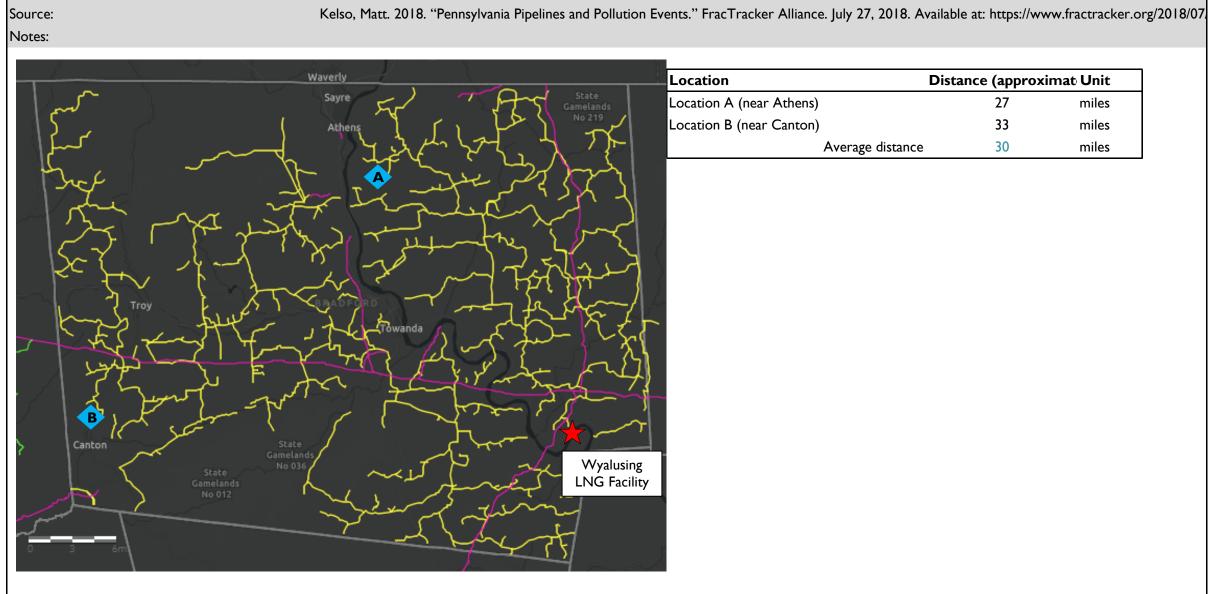
No upfront emissions were c The above uses a 20-year GWP to calculate CO2e

Section B. Data and Calculations

Section BI. Natural Gas Throughp	Section BI. Natural Gas Throughput										
Description	Value	Units	Notes	Source							
Amount of natural gas transported		128 bcf									

Section B2. Pipeline Emissions Dat	a and Calculation	IS		
Description	Value	Units	Notes	Source
Transmission emissions per mile	Ι,	20 kg CH4/mile		Littlefield et al., 2019.
Miles of transmission:		30 miles	This is a general assumptior	based on the relative proximity betweer
Transmission emissions	33,6	0 kg CH4		
Transmission emissions		37 short tons CH4		
Transmission emissions	3,0	55 short tons CO2e (20 year)		
Transmission emissions	1,1	3 short tons CO2e (100 year)		

Section B3. Processing Emissions	Data and Ca	alculatio	ns		
Description	Value		Units	Notes	Source
Processing/Pneumatics Emissions		3,173	kg CH4 / facility		Littlefield et al., 2019.
Processing/Pneumatics Emissions		33.6	Bcf/facility-yr		Littlefield et al., 2019.
Processing/Pneumatics Emissions		128	Bcf throughput per year		
Processing/Pneumatics Emissions		3.81	facilities used/year		
Processing/Pneumatics Emissions		I 2,088	kg CH4 / year		
Processing/Pneumatics Emissions		13	short tons CH4		
Processing/Pneumatics Emissions		1,099	short tons CO2e (20 year)		
Processing/Pneumatics Emissions		397	short tons CO2e (100 year)		


Section C. Sources

Section CI. Source for Exhibit 3-16. GHGI Emission and Activity Factors and Corresponding Natural Gas Throughput Source: Littlefield, J., S. Roman-White, D. Augustine, A. Pegallapati, G. G. Zaimes, S. Rai, G. Cooney, and T. J. Skone. April 2019. "Life Cycle Analysis of Natural Gas Extraction and Power Generation." Natio Notes:

Exhibit 3-16. GHGI Emission and Activity Factors and Corresponding Natural Gas Throughput

					Emissions		Natural Gas Throughput				
Stage (or substage)	Emission Source	Vent	Fugitive	GHGI Emission Factor	nits (annualize	Activity Factor	Units	Throughput	Units		
	Well drilling	•		52	CH4/completed	*	completed well:	EUR*	Bcf/well-life		
	Compressor blowdowns	•		77	; CH4/compress	0.078 *	ompressors/we ۱ wells	inual producti	io Mcf/basin-yr		
Production	PRV (pressure relief valve) upsets	•		0.70	kg CH4/PRV	2.4 *	PRV/well wells	inual producti	io Mcf/basin-yr		
	Vessel blowdowns	•		1.6	kg CH4/vessel	0.93 *	vessels/well wells	inual producti	io Mcf/basin-yr		
Gathering	Mishaps	•		14	kg CH4/mile	81 0.67	wells/facility miles/well	inual producti	io Mcf/basin-yr		
Processing	Pneumatics	•		3,173	kg CH4/facility	1	facilities	33.6	Bcf/facility-yr		
Transmission	Dehydrator vents	•		1.8	kg CH4/MMscf NG	1.19E+06	MMscf NG	28.2	Fcf transmission		
Transmission Pipeline	Pipeline fugitives		•	1,120	dehvdrated kg CH4/mile	301,257	miles	28.2	Fcf transmission		
Storage	Dehydrator vents	•		2.3	kg CH4/MMscf dehvdrated	1.85E+06	Mscf dehydrate	9.24	Tcf capacity		
	Station venting	•		84,000	kg CH4/station	*	f station capaci	9.24	Tcf capacity		
	Customer meters (residential)		•	1.5	kg CH4/meters	5.43E+07	meters	13.9	Tcf distributed		
	Customer meters (commercial/industrial)		•	9.7	kg CH4/meter	5.66E+06	meters	13.9	Tcf distributed		
Distribution	PRV (pressure relief valve) upsets	•		1.00	kg CH4/mile	1.28E+06	miles	13.9	Tcf distributed		
	Pipeline blowdowns	•		2.00	kg CH4/mile	2.19E+06	miles	13.9	Tcf distributed		
	Mishaps (dig ins)	•		31	kg CH4/mile	2.19E+06	miles	13.9	Tcf distributed		
* In some instances, throughput is variable across basin technologies. Variability in activity factors are based or based on stratification of DI Desktop data.											

Section C2. Estimated Transmission Distance

Gas Liquefaction Facility

This sheet calculates the GHG emissions related to natural gas liquefaction at the Wyalusing Liquefaction facility.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	units	short tons CO2e/year	short tons CO2e/year
Gas Liquefaction Facility, 20-year GWP	See "Construction" tab	1,138,400	١,138,400
Gas Liquefaction Facility, 100-year GWP	See "Construction" tab	1,112,521	1,112,521

Section B. Data and Calculations

Section B1. Natural Gas Throughput									
Description	Value	Units	Notes	Source					
Amount of natural gas liquefied		128 bcf/year							

Section B2. Ongoing Operating Emissions Data and Calculations per BCF

This section is used to calculate the Default Wyalusing facility emissions or the User Input emissions scaled to BCF of throughput, based on the Dashboard inputs. If users input their own facility emissions in the Dashboard, Section B3 is used instead.

Input	Value	Units	Notes	Source]
Natural Gas Throughput (Gibbstown documentation)		128	Natural gas throughput in Gibbstov	vn documentation as of December	2022, used to scale User Input levels of natural gas throughp
Operating Facility Annual Emissions, All GHGs	8,	654 short tons CO2e/bcf/year	100 year GWP (AR4 values)		
Operating Facility Annual Emissions, CH4	3	3.03 short tons CH4/bcf/year			
Operating Facility Annual Emissions, CO2	8,	577 short tons CO2/bcf/year			
Operating Facility Annual Emissions, All GHGs	8,	827 short tons CO2e/bcf/year	20 year GWP (AR6)		
Operating Facility Annual Emissions, All GHGs	8,	668 short tons CO2e/bcf/year	100 year GWP (AR6)		
Fugitive Facility Annual Emissions, CH4	(0.80 short tons CH4/ybcf/year			
Fugitive Facility Annual Emissions, CO2	0.00	016 short tons CO2/bcf/year			
Fugitive Facility Annual Emissions, All GHGs	(66.3 short tons CO2e/bcf/year	20 year GWP		
Fugitive Facility Annual Emissions, All GHGs	2	24.0 short tons CO2e/bcf/year	100 year GWP		
Annual Emissions, All GHGs	8,	894 short tons CO2e/bcf/year	20 year GWP (AR6)		
Annual Emissions, All GHGs	8,	692 short tons CO2e/bcf/year	100 year GWP (AR6)		
Annual Emissions, All GHGs	1,138,	400 short tons CO2e/year	20 year GWP (AR6)]
Annual Emissions, All GHGs	١,١١2,	521 short tons CO2e/year	100 year GWP (AR6)		

Section B3. Ongoing Operating Emissions Data and Calculations

This section is used if a user inputs their own facility emission	sions in the Dashboard. If us	ers choose to use the Default en	nissions or scale emissions with BO	CF in the Dashboard, Section B2 is used instead.
Input	Value	Units	Notes	Source

Operating Facility Annual Emissions, All GHGs	1,107,679 short tons CO2e/year	100 year GWP (AR4 values)
Operating Facility Annual Emissions, CH4	118 short tons CH4/year	
Operating Facility Annual Emissions, CO2	1,097,888 short tons CO2/year	
Operating Facility Annual Emissions, All GHGs	1,107,592 short tons CO2e/year	20 year GWP (AR6)
Operating Facility Annual Emissions, All GHGs	1,101,393 short tons CO2e/year	100 year GWP (AR6)
Fugitive Facility Annual Emissions, All GHGs	103 short tons CO2e/year	
Fugitive Facility Annual Emissions, CH4	102.88 short tons CH4/year	
Fugitive Facility Annual Emissions, CO2	0.02 short tons CO2/year	
Fugitive Facility Annual Emissions, CH4 (CO2e)	8,487.60 short tons CO2e/year	User Input GWP: AR6 GWP-20
Fugitive Facility Annual Emissions, CO2 (CO2e)	0.02 short tons CO2e/year	User Input GWP: AR6 GWP-20
CH4 percent of Fugitive Emissions (CO2e)	100% CH4 percent of CO2e	
Fugitive Facility Annual Emissions, CH4	1.25 short tons CH4/year	
Fugitive Facility Annual Emissions, CO2	0.00 short tons CO2/year	
Fugitive Facility Annual Emissions, All GHGs	102.88 short tons CO2e/year	20 year GWP (AR6)
Fugitive Facility Annual Emissions, All GHGs	37.16 short tons CO2e/year	100 year GWP (AR6)
Annual Emissions, All GHGs	1,107,695 short tons CO2e/year	20 year GWP (AR6)
Annual Emissions, All GHGs	1,101,430 short tons CO2e/year	100 year GWP (AR6)

Section C. Sources

Section CI. Es	stimate of CO2 portion of facility emissions										
Source:	AP 42 Fifth Edition Compilation of Air Pollutant Emissions Factors, Volume 1: Stationary Point and Area Sources. Available at: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors#5thed										
Note:	Estimated % proportion CO2 calculated using AP-42 emissions factors and PA DEP Air Quality Application emission calculation tables										
	Percent composition	Process Turbines (LM6000PF+)	Gas Turbine Generators (SGT-400)	Steam Boilers	Regeneration Gas Heater	Generators	Fire Pumps	Thermal Oxidizer	Flares	Total	
	Share of total facility emissions	47.4%	19.9%	5.4%	1.7%	0.2%	0.0%	24.1%	1.3%	100.0%	
	Estimated % share CO2	99.90%	99.90%	99%	99%	99%	99%	97%	99%		
	Aggregated % share	47.31%	19.84%	5.37%	1.69%	0.23%	0.02%	23.33%	1.32%	99.1%	
	% share not CO2									0.88%	

Source:	PA DEP Air Quality Plan Approva	1 7/24/2019, available at	t: https://files.dep.state.pa.us/RegionalRes	sources/NCRO/NCROPortalFiles/N	ewFortressEnergy/Air_0	Quality_Plan_Approval_7-24-19.pd	f							
Note:	Table updated from Air Quality App	Table updated from Air Quality Application with correct approved numbers in Plan Approval												
	Cont	rolled Potential Annual Emi	ssi			Controlled Po	tential Annual Emissions (TPY)							
Pollutant	Facility Annual Emissions (TPY)	Unit	Process Turbines (LM6000PF+) ¹	Gas Turbine Generators (SGT- 400) ¹	Steam Boilers	Regeneration Gas Heater	Generators	Fire Pumps	Thermal Oxidizer	Flares	Fugitives			
٧Ox	97.86	tons/year	32.98	13.46	3.75	6.41	12.82	0.42	27.37	6.55				
0	90.87	tons/year	17.83	7.29	10.5	6.57	13.14	0.3	16.5	26.99				
/0C	36.3	tons/year	12.03	8.97	1.92	3.05	6.1	0.038	0.021	2.49	17.46			
PM/PM-10/PM-2.5	99.95	tons/year	57.15	26.64	8.41	2.08	4.16	0.024	2.44	2.51	0.09			
O _X	83.25	tons/year	16.93	7.1	1.94	0.61	1.22	0.02	55.86	0.75				
GHG (CO2e)	1,107,679	tons/year	524,532	219,981	60,105	18,899	2570	236	266,454	14,815				
NH3	49.02	tons/year	29.76	12.48	6.78									
Total HAPs ²	8.77	tons/year												
12504	25.9	tons/year	18.38	6.17	1.33						1			

Source:	PA DEP. Minor Sour	rce Plan Approval Application for Natura	Gas Processing Plant. December 2018	3. Available at: https://files.dep	.state.pa.us/RegionalResource	es/NCRO/NCROPortalFiles/	NewFortressEnergy/New%20Fo	ortress%20Energy%20LNG%2	20Plant%20Plan%20Approval%	%20Application%20(Decembe
Notes:	Submitted to PA DE	P by Bradford County Real Estate Partne	rs LLC							
Components	Phase	TOC/VOC Emission Factor (Ib/hour/component)	Actual Component Count	Hourly CH4 Emissions ('''(b) (lb/hour)	Annual CH4 Emissions ^(d) (tons/year)) Hourly CO2 Emissions (a) ^{,0} ," (lb/hour)	Annual CO2 Emissions ^(d) (tons/year)	Hourly VOC Emissions (a'*' (lb/hour)	Annual VOC Emissions ^{(d} (tons/year)	i,
Valves	Gas/Vapor	9.9E-03 (1)	1,414	13.72	60.09	0.00E+00	1.00E-02	3.20E-01	5.70E-01	
Pressure Relief Valves	Gas/Vapor	1.9E-02 (1)	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	No PSVs vented to atmosphere
Pump Seals		2.9E-03 (1)	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Flanges	Gas/Vapor	8.6E-04 (1)	1,275	1.07	4.7	2.20E-04	9.60E-04	2.50E-02	4.40E-02	
Compressor Seals		1.9E-02 (1)	10	0.19	0.83	3.90E-05	1.70E-04	4.50E-03	7.80E-03	
Sampling Connections		3.3E-02 (2)	2	2.8	12.28	5.80E-04	0.00E+00	7.00E-02	1.20E-01	
Total					77.89		0.02		0.73	
(c) Hourly Emissions (lb/hr) = [Emission Factor (lb VOC	hr/component)] x [Count (compor CH4 Content (mass %									
	CO ₂ Content (mass %	5) = 0.02								
	VOC Content (mass %	%) = 2.30								
	TOC Content (mass %	%) = 99.70								
(d) Annual Emissions (tons/yr) = [Hourly Emissions (lb/h)] x [Hours of Operation (hr/yr)] / Hours of Operation (h LDAR Program Reduc	hr/yr) = 8,760	for quarterly LDAR per PADEP GP5 supp	oort Document						
(e) HAPS estimated at percent as for Thermal Oxidizer	10.80%	0.08 TPY								
Notes:										
(1) EPA-453/R-95-017 Protocol for Equipment Leak Emi organic compounds emission factors (TOC).	ssion Estimates, EPA, November 19	95. Table 2-4. Oil and Gas Production Opera	tions Average Emission Factors (page 2-15), total						

Section C4. Table A-10.b Fugitive Emis	ssions: LNG Equipm	ent Leaks								
burce:	PA DEP. Minor Sour	ce Plan Approval Application for Natural	Gas Processing Plant. December 201	8. Available at: https://files.dep.	state.pa.us/RegionalResources	/NCRO/NCROPortalFiles/N	ewFortressEnergy/New%20Fo	rtress%20Energy%20LNG%2	20Plant%20Plan%20Approval%	20Application%20(December%
lotes:	Submitted to PA DE	P by Bradford County Real Estate Partne	rs LLC							_
Components	Phase	TOC/VOC Emission Factor (Ib/hr/component)	Actual Component Count	Hourly CH4 Emissions ^{(a),(b)} (lb/hr)	Annual CH Emissions ^(d) (tons/yr)	Hourly CO ₂ Emissions (a) ^{,01}) (lb/hr)	Annual CO2 Emissions ^(d) (tons/yr)	Hourly VOC Emissions ^{(a),(c)} (lb/hr)	Annual VOC Emissions ^(d) (tons/yr)	
alves	Liquid	0.0055	634	3.42	14.97	0	0	0.08	0.14	
ressure Relief Valves	Liquid	0.017	0	0	0	0	0	0	0	No PSVs vented to atmosphere
ump Seals		0.0029	0	0	0	0	0	0	0	
anges	Liquid	2.40E-04	321	0.08	0.33	1.60E-05	6.80E-05	1.80E-03	3.10E-03	
Compressor Seals		1.90E-02	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ampling Connections	All	0.033	I	1.4	6.14	0.00029	0	0.03	0.06	
otal					21.44		0		0.2	
alculations:	-	-			-		-		•	-

(a) Hourly Emissions (lb/hr) = [Emission Factor (lb TOC/hr/component)] × [Count (component)] × [CH₄/CO₂//VOC Content (Mass %)] / [TOC Content (Mass %)]

(b) Hourly Emissions (lb/hr) = [Emission Factor (lb VOC/hr/component)] x [Count (component)] x [CH₄/CO₂ Content (Mass %)] / [VOC Content (Mass%)]

(c) Hourly Emissions (lb/hr) = [Emission Factor (lb VOC/hr/component)] x [Count (component)]

CH₄ Content (mass %) = 97.5

CO₂ Content (mass %) = 0.02

VOC Content (mass %) = 2.30

TOC Content (mass %) = 99.70

(d) Annual Emissions (tons/yr) = [Hourly Emissions (lb/hr)] x [Hours of Operation (hr/yr)] / [2,000 lb/ton]

Hours of Operation (hr/yr) = 8,760

LDAR Program Reduction = 60% Based on 60% reduction for quarterly LDAR per PADEP GP5 support Document

(e) HAPS not expected to be present

Notes:

(1) EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates, EPA, November 1995. Table 2-4. Oil and Gas Production Operations Average Emission Factors (page 2-15), total organic

compounds emission factors (TOC).

(2) EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates, EPA, November 1995. Table 2-2. Refinery Average Emission Factors (page 2-13), non-methane organic compounds emission factor (VOC)

Notes:	Submitted to PA DE	P by Bradford County Real Estate Partne	ers LLC	•	T	T			T	-
Components	Phase	TOC/VOC Emission Factor (Ib/hr/component)	Actual Component Count	Hourly CH4 Emissions ('''(b) (lb/hr)	Annual CH4 Emissions ^(d) (tons/yr)	Hourly CO2 Emissions (a)' ⁰ '' (lb/hr)	Annual CO2 Emissions ^(d) (tons/yr)	Hourly VOC Emissions (a'*' (lb/hr)	Annual VOC Emissions ^{(d,} (tons/yr)	
Valves	Gas/Vapor	9.9E-03 (I)	423	0.66	2.9	0	0	3.53	6.19	
Pressure Relief Valves	Gas/Vapor	1.9E-02 (1)	0	0	0	0	0	0	0	No PSVs vented to atmosphere
Pump Seals		2.9E-03 (1)	0	0	0	0	0	0	0	
Flanges	Gas/Vapor	8.6E-04 (I)	901	0.12	0.54	0	0	0.65	1.14	
Compressor Seals		1.9E-02 (1)	4	0.01	0.05	0	0	0.065	0.11	
Sampling Connections		3.3E-02 (2)	2	0.01	0.05	0	0	0.07	0.12	
Total					3.55		0		7.56	
(c) Hourly Emissions (lb/hr) = [Emission Factor (lb VOC CH ₄ Content (mass %) = 15.0 CO ₂ Content (mass %) = 0.00 VOC Content (mass %) = 80.00 FOC Content (mass %) = 95.00 (d) Annual Emissions (tons/yr) = [Hourly Emissions (lb/h Hours of Operation (hr/yr) = 8,760 LDAR Program Reduction = 60% Based on 60% r (e) Refrigerant not a HAP	or)] x [Hours of Operation (hr/yr)] / eduction for quarterly LDAR per PA	[2,000 lb/ton] ADEP GP5 support Document	ations Average Emission Factors (page 2-15	i), total						
Votes: I) EPA-453/R-95-017 Protocol for Equipment Leak Em organic compounds emission factors (TOC).	ission Estimates, EPA, November 19	95. Table 2-4. OII and Gas Production Opera	6							

Section C6. Natural Gas Consumed Duri	ng Liquefaction Process
Source:	Pospisil, J., P. Charvat, O. Arsenyeva, L. Klimes, M. Spilacek, J.J. Klemes. 2018. "Energy demand of liq
Notes:	
Gas consumed during the liquefaction process	Source
9-10%	Kandiyoti R. (Rafael). Pipelines: flowing oil and crude politics. London, UK: I.B. Tauris; 2008.
5-6%	Ulvestad M, Overland I. Natural gas and CO2 price variation: impact on the relative cost-efficiency
5-15%	Selfors A, Thorsen K, Hofstad K, Fagerlund K, Wiggen T. Natural gas: a general introduction. Norw

5-15%Selfors A, Thorsen K, Hofstad K, Fagerlund K, Wiggen T. Natural gas: a general introduction. Norwe9%Jung Y, Yokobori K, Doi N, Peng H, Wang Z, Sinygin O. Natural gas pipeline development in Northe

8.5% Average amount of gas consumed during liquefaction

Domestic Transport

This sheet calculates the GHG emissions related to transporting LNG by train and truck from the Wyalusing Liquefaction Facility to the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	units	short tons CO2e/yr	short tons CO2e/yr
Domestic Transport, 20-year GWP	0	41,116	41,116
Domestic Transport, 100-year GWP	0	24,523	24,523

No upfront emissions were calculated, under the assumption that the infrastructure is already built.

Section B. Data and Calculations

Section B1. Natural Gas Throughput				
Description	Value	Units	Notes	Source
Amount of natural gas transported from liquefaction facilit	у	128 bcf		

Section B2. Train Transportation Emis	ssions				
Calculated as if trains transport 100% of the LNG through	out				
Input	Value	Unit	Notes	Source	
Distance travelled		255 Miles	Estimation from Google Maps route	between Wyalusing, PA, and Gibbstown, NJ	
Number of trains		150 train cars/day	Estimation from Application	Pipeline and Hazardous Materials Sa	ety Administration (PHMSA). July 2019. "ETS LLC SP 20534 Application (REDACTED)." Available at: https://www.regulations.gov/docur
Emission Factor		144.97 gCO2/TEU-mi		PHMSA, 2019	
Emission Factor		0.000160 short ton CO2/TEU-mi			
Operating days per year		365.25 days/year			
Emissions per day		6 short tonCO2/day			
Annual Emissions		2,232 short tonCO2/year	Calculated as if trains transport 100	% of the LNG throughput	

Section B3. Truck Transportation Emissions					
Calculated as if trucks transport 100% of the LNG throughput					
Input	Value	Unit	Notes	Source	
Distance travelled	174.04	Miles	Estimation from Google Maps route		
Number of trucks	400	cars/day			
Emission Factor	1001	gCO2/TEU-mi			
Emission Factor	0.001	short ton CO2/TEU-mi			
Operating days per year	365.25	days/year			
Emissions per day	77	short tonCO2/day			
Annual Emissions	28,049	short tonCO2/year	Calculated as if trucks transport 100% o	f the LNG throughput	

Section B4. Transport Emission Calculations

Percent transported by rail	Rail	Truck	Total L	Jnit	Notes	Source
Percent share of transports	50.00%	50.00%	100%	%	Input. Total must sum to 100%	
Transport emissions proportion	1,116	14,024	15,140	short ton CO2e/year		

Section B5. Venting, Flaring, and Fugitive Emissions during Transit Value Unit Notes Source Input Number of Cars (default) 550 Number of cars transporting L Includes both train and truck cars 1.93 Number of valves/LNG car Assumes comparable number of units to refrigerated liquid equipment leaks Valves - Number of pump seals/LNG c: Assumes comparable number of units to refrigerated liquid equipment leaks Pump seals 1.75 Number of connectors/LNG CAssumes comparable number of units to refrigerated liquid equipment leaks Connectors - Number of other leak sources/Assumes comparable number of units to refrigerated liquid equipment leaks Other leak sources - Number of vapor recovery cor Assumes comparable number of units to refrigerated liquid equipment leaks Vapor recovery compressors 550 Number of Cars (user input or default) Valves 1,059 Number of valves Assumes comparable number of units to refr PA DEP, 2018 Assumes comparable number of units to refr PA DEP, 2018 Pump seals - Number of pump seals Assumes comparable number of units to refr PA DEP, 2018 Connectors 962 Number of connectors - Number of other leak sources Assumes comparable number of units to refr PA DEP, 2018 Other leak sources - Number of vapor recovery cor Assumes comparable number of units to refr PA DEP, 2018 Vapor recovery compressors 1,260 scf/hour Valve leakage Pump seal leakage - scf/hour Connector leakage 327 scf/hour Other leak sources leakage - scf/hour Vapor recovery compressor leakage - scf/hour Days per year 365.25 days/year Valve leakage 11,047,001 scf/year Pump seal leakage - scf/year 2,867,183 scf/year Connector leakage - scf/year Other leak sources leakage Vapor recovery compressor leakage - scf/year Valve emissions 250 short tons of CH4/year Pump seal emissions - short tons of CH4/year 65 short tons of CH4/year Connector emissions Other leak sources emissions - short tons of CH4/year - short tons of CH4/year Vapor recovery compressor emissions 315 short tons of CH4/year Total Leakage Emissions Total Leakage Emissions (20-year GWP) 25,976 short tons CO2e/year Total Leakage Emissions (100-year GWP) 9,383 short tons CO2e/year

Section C. Sources

Section CI. Engine Emissio				
Source:	PHMSA SP 20534 Special Permit to transport LNG by rail in DOT-113C120W rai	tank cars , availab		
Note:	Table 3 is standard comparison of emissions, not specific to this project			
Note:	"A standardized unit, g/TEU-mi, converted the grams of pollutant produced pe	er twenty-foot equ		
Table 3. GHG Emission Factors for Transportation Modalities (g/TEU-mi)				
Mode	CO2			
Truck	1001			
Rail	44.97			
Ship	292.83			

Section C2. Train Transportation

Source:	PHMSA, Application	PHMSA, Application for a Special Permit to Transport Methane, Refridgerated Liquid in DOT 113 Ta				
Notes:	Submitted to PHM	lutions, LLC on August 21, 2017				
Description	Value	Units	Notes			
Train cars per unit train	50-100	cars	Application, page 6			
Total proposed operating unit trains	2	unit trains/day	Application, page 7			
Average cars per unit train	75	cars				
Estimated cars operated per day	150	cars/day				

Section C3. Wyalusing Project Description

Source:	PA DEP. Minor Source Plan Approval Application for Natural Gas Processing Plant	PA DEP. Minor Source Plan Approval Application for Natural Gas Processing Plant. December 2018. Available at: https://files.dep.state.pa.us/RegionalResources/NCRO		
Notes:	Submitted to PA DEP by Bradford County Real Estate Partners LLC	Submitted to PA DEP by Bradford County Real Estate Partners LLC		
Step/part	Process	Value	Unit	
Truck loading	Loading bays	18	trucks/load	
Truck loading	Tanker truck nominal capacity	10,000	10,000 gal/truck	
Truck loading	Tanker truck fill rate	300	300 gal/minute	
Truck loading	Daily onsite vehicular traffic	400	400 vehicles	
Truck loading	Distance traveled	68,620 VMT		
Production	Estimated nominal daily average of LNG production	4,000,000	gallons/day	

Section C4. Truck Transport Volume Calculations

Source:	Section C2, above.		
Notes:			
Estimated annual volume transported by truck	Based on estimate of average gallons produced per day	19.07 bcf/year by Truck	
Truck loading rate	Total for all truck bays	324,000 gal/hour	
Truck loading hours		12 hours/day	
Estimated annual gallons of LNG transported by trucl	< compared by the second se	1,420,092,000 gal/year	
Estimated maximum volume of LNG transported by truck Based on truck capacity and loading assumptions		115.74 bcf/year	
Total LNG transported	Total LNG exported from Gibbstown	I 28.00 Total bcf/year exported	
Maximum percent of total LNG exports transported	90.4% LNG exported by truck		

Source:	Dolawara Riverkooper Network "I N	G Gibbstown Interactive Map" Available at: https://www.delawareriverkeeper.org/t	vonomul+
	Delaware Riverkeeper Network. Liv	S Globstown interactive map Available at. https://www.delawarenverkeeper.org/t	ixonomy/t
Notes:			
Truck Route A			
Name	Miles	Rail Route A	
29	9.46	Total miles	
309	18.07	255	
115	2.82		
476	13.13		
6	25.34		
476	94.28		
95	2.97		
44	2.37		
322	3.69		
130	1.28		
Repauna Ave	0.63		
Total miles	174.04		

Section C6. Storage	Loading, and Unloading	loss Rates for LNG
Section Co. Storage	Loading, and Onloading	LUSS MALES IUI LING

Source:	The LEVON Group, LLC. May 2015. "Liquefied Natural Gas (LNG) Operations: Consistent Methodology for Estimating Greenhouse Gas Emissions." Energy API. Avail
Notes:	Most or all venting from LNG storage tanks is captured and redirected to storage tanks or flared. As a result, the CH4 emissions from venting of stored LNG are typically negligible.

Table 12. Storage, Load, and Unloading: Typical Loss Rates

Source	Typical Venting or LUnits
BOG from storage tanks (a)	0.05% Of total tank volume per day
BOG from vessels during shipping (b)	0.15% Of total ship storage volume per day
Transfer pipe loss - foam insulation (c)	0.0012% per km LNG transfer pipe (d)
Transfer pipe loss - powder insulation (c)	0.0006% per km LNG transfer pipe (d)
Transfer pipe loss - vacuum insulation	0.000120% per km LNG transfer pipe (d)

BOG = boil-off-gas

(a) D. Féger, "An innovative way of reducing BOG on existing or 'new built' LNG storage tanks", ,Proceedings LNG16 Congress, Algeria, April 2010

(b) Sempra LNG, "GHG life-cycle emissions study: U.S. Natural Gas Supplies and International LNG", November 2008

(c) B. Kitzel, "Choosing the right insulation", LNG Industry, Spring 2008

(d) Based on LNG transfer rate of 228m3/min and heat transfer coefficient of pipe wall insulation, U(w/m2k)= 0.26 (foam), 0.13 (powder), and 0.026 (vacuum),

(e) EPA, Natural Gas Star, "Liquefied Natural Gas Emissions Reduction Opportunities: Lessons Learned" Natural Gas STAR Technology Transfer Workshop, Alaska, May 2006

Section C7. Default Methane Emission Factors per Component Population for LNG Storage and Import/Export Terminals

Source:	The LEVON Group, LLC. May 2015. "Liquefied Natural Gas (LNG) Operation	ations: Consistent Methodology for Estimating Greenhouse Gas Emissions." Energy API. Avail:
Notes:		
Table 13. Default Methane Emission F	Factors per Component Population for LNG Storage and Import/Export Terminals	
Component/Device	Emissions Factor (a) (scf/hour/component)	
Valve	1.19	
	4.00	

Pump Seal	4.00	
Connectors (flanges and threaded fittings)	0.34	
Other (b)	1.77	
Vapor Recovery Compressors ©	4.17 (per compressor)	

(a) See Reference 20; based on an assumed methane content of 93.4%
(b) Emission factor is in terms of scf/hour/compressor
(c) Emission factor is in terms of scf/hour/compressor

Section C8. Table A-10.d Fugitive Emissions: Refrigerated Liquid Equipment Leaks

Source: Notes: PA DEP. Minor Source Plan Approval Application for Natural Gas Processing Plant. December 2018. Available at: https://files.dep.state.pa.us/RegionalResources/NCRO/NCROPortalFiles/NewFortressEnergy/New%20Fortress%20Energy%20LNG%20Plan%20Approval%20Application%20(December%20 Submitted to PA DEP by Bradford County Real Estate Partners LLC

Bradford County Real Estate Partners LLC

Natural Gas Processing Plant

Table A-10.d Fugitive Emissions: Refrigerated Liquid Equipment Leaks

Components	Phase	TOC/VOC Emission	Factor (lb/hr/component)	Actual Component Count	Hourly CH4 Emissions (a),(b) (lb/hr)	Annual CH4 Emissions (d) (tons/yr)	Hourly CO2 Emissions (a),(b) (lb/hr)	Annual CO2 Emissions (d) (tons/yr)	Hourly VOC Emissions (a),(c) (lb/hr)	Annual VOC Emissions (d) (tons/yr)	No PSVs vented to atmosphere
Valves	Liquid	0.0055	(1)	1059	0.92	4.04	0	0	4.92	8.61	
Pressure Relief Valves	Liquid	0.017	(1)	0	0	0	0	0	0	0	
Pump Seals		0.0029	(1)	0	0	0	0	0	0	0	
Flanges	Liquid	0.00024	(1)	962	0.04	0.16	0	0	0.2	0.34	
Compressor Seals		0.019	(1)	0	0	0	0	0	0	0	
Sampling Connections	All	0.033	(2)	0	0	0	0	0	0	0	
Total						4.2		0		8.96	

Calculations:

(a) Hourly Emissions (lb/hr) = [Emission Factor (lb TOC/hr/component)] × [Count (component)] × [CH4/CO2//VOC Content (Mass %)] / [TOC Content (Mass %)]

(b) Hourly Emissions (lb/hr) = [Emission Factor (lb VOC/hr/component)] x [Count (component)] x [CH4/CO2 Content (Mass %)] / [VOC Content (Mass%)]

(c) Hourly Emissions (lb/hr) = [Emission Factor (lb VOC/hr/component)] x [Count (component)]

CH4 Content (mass %) = 15.0

CO2 Content (mass %) = 0.00

VOC Content (mass %) = 80.00

TOC Content (mass %) = 95.00

(d) Annual Emissions (tons/yr) = [Hourly Emissions (lb/hr)] x [Hours of Operation (hr/yr)] / [2,000 lb/ton]

Hours of Operation (hr/yr) = 8,760

LDAR Program Reduction = 60% Based on 60% reduction for quarterly LDAR per PADEP GP5 support Document

(e) Refrigerant not a HAP

Notes:

(1) EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates, EPA, November 1995. Table 2-4. Oil and Gas Production Operations Average Emission Factors (page 2-15), total

organic compounds emission factors (TOC).

(2) EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates, EPA, November 1995. Table 2-2. Refinery Average Emission Factors (page 2-13), non-methane organic compounds

emission factor (VOC).

Export Facility

This sheet calculates the GHG emissions related to exporting LNG from the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions	
	units	short tons CO2e/yr	short tons CO2e/yr	
Export Facility, 20-year GWP	see "Construction" tab	15,394	15,394	
Export Facility, 100-year GWP	see "Construction" tab	10,510	10,510	

Section B. Data and Calculations

Section B1. Natural Gas Throughput							
Description	Value	Units	Notes	Source			
Amount of natural gas exported		128 bcf/year					

Section B2. Ongoing Emissions from Gibbstown Export Facility

Emissions Source Scale Factor	Saala Faatan	GHG Emission rate (tonnes/year)			GHG Emission (short	GHG Emission (short tons/year)	Notes
	Scale Factor	CO2	CH4	N2O	tons/year) (AR6 20-year	(AR6 100-year GWP)	
3 Gas turbines	0%	0	0	0	0	0	Liquefaction not included at the Gibbstown export facility
1 incinerators	0%	0	0	0	0	0	Liquefaction not included at the Gibbstown export facility
flare derricks (5 flare sources)	8%	6,576	0.43	0.13	7,324	7,298	Gibbstown is a smaller facility
ugitive sources	8%	0.07	84	0	7,601	2,746	Gibbstown is a smaller facility
hipping activities - domestic marine	8%	418	0	0	469	466	Gibbstown is a smaller facility
hipping activities - International marir	0%	0	0	0	0	0	Calculated in a separate step
otal GHG emissions from Project		6,994	04	0.14	15,394	10,510	
operation, excluding international		6,774	04	0.14	15,374	10,510	

Section C. Sources

Section CI. LNG Cana	da Example	
Source:	LNG Canada Export Termina	al Environmental Assessment Application. Available at: https://www.jbic.go.jp/ja/business-areas/environment/pro
Note:		
Component	Value Unit	
Number of liquefaction trains	4 trains	
Carrier visits per year	350 ships/y	year
Inlet gas	4.2 bcf/day	ι γ
Inlet gas	1534.05 bcf/yea	ar
Emissions Scale Ratio	8.3%	
Annual LNG production	26 million	n metric tons per annum (mtpa)
Phase 1 construction length	60 months	IS
Number of berths	2 docks	

Table 5.3-8: Estimated GHG Emissions during Construction

Source:		Total		
Source.	CO2	CH4	N2O	Tonnes CO2e
Land clearing				166137
Site preparation	20190	1.12	8.2	22661
Instrumental, mechanical, electrical installation (Phase I)	7695	0.43	3.13	8637
Instrumental, mechanical, electrical installation (subsequent phase)	7695	0.43	3.13	8637
Marine terminal construction (Phase 1)	5054	0.5	0.94	5437
Marine terminal construction (subsequent phases)	5054	0.5	0.94	5437
Shipping activities - domestic marine	22779	0.42	1.12	23123
On road transportation	15810	0.18	0.13	15854
Total GHG emissions from construction	84276	3.57	17.58	255742

Note: using AR4 GWP values for CO2e calculation

Table 5.3-9: Estimated GHG Emissions during Operation

Sources		GHG Emission rate (tonnes/year)					
Source:	CO2	CH4	N2O	CO2e			
8 Gas turbines	3054358	63	56	3072			
4 incinerators	704917	345	208	775636			
2 flare derricks (5 flare sources)	78810	5.2	1.5	79398			
Fugitive sources	0.89	1002		25056			
Shipping activities - domestic marine	5008	0.65	0.15	5067			
Shipping activities - International marine	83396	0.59	4.8	84827			
Total GHG emissions from Project operation, excluding							
international marine emissions	3843094	1415	266	3957728			
Note: using AR4 GWP values for CO2e calculation							

Sea Transportation

This sheet calculates the GHG emissions related to transporting LNG via carrier ship from the Gibbstown LNG Export Terminal to foreign import terminals in Ireland and Puerto Rico.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions	
	units	units	units	
Sea Transportation, 20-year GWP	0	297,218	297,218	
Sea Transportation, 100-year GWP	0	192,828	192,828	

No upfront emissions related to construction were calculated, under the assumption that the vessels used were already constructed.

Section B. Data and Calculations

Section B1. Natural Gas Throughput						
Description	Value	Units	Notes	Source		
Amount of natural gas transported via carrier ship		128 bcf/year				

Section B2. Sea Transport Data Inputs	5			
Description	Value	Units	Notes	Source
Days at dock/loading:		l day		Balcombe et al., 2022.
Days sailing from Texas to Belgium:		16 days		Balcombe et al., 2022.
Unloading days:		l day		Balcombe et al., 2022.
Return voyage		14 days	includes 13 days of travel and 1 day refueling	g Balcombe et al., 2022.
Tonnes of LNG delivered:	67	500 tonnes of LNG delivered to Belgium		Balcombe et al., 2022.
BCF of LNG delivered		3.29 bcf of LNG delivered to Belgium		
Distance from Texas to Belgium and back	20	211 km		Balcombe et al., 2022.
Distance from PA to Ireland and back	16	000 km	Approximate measure using ArcGIS	
Distance from PA to Puerto Rico and back	H	400 km	Approximate measure using ArcGIS	
LNG Exported from Gibbstown		128 bcf natural gas/year		
Equivalent trips needed per year		39 Belgium equivalent trips per year		
Percent of LNG to Ireland		50% %		
Percent of LNG to Puerto Rico		50% %		
Trips to Ireland per year		19 trips/year		
Trips to Puerto Rico per year		19 trips/year		
Ireland % of Belgium Emissions per trip		79% %		
Puerto Rico % of Belgium Emissions per trip		56% %		

Section B3. Sea Transport Emission Calculations							
Description	Value		Units	Notes	Source		
CO2 emissions		4,600) tonnes CO2		Balcombe et al., 2022.		
CH4 emissions		68	3 tonnes CH4	This is equivalent to 0.1	% of the delivered LN Balcombe et al., 2022.		
CO2 emissions		5,069	short tons CO2 per trip				
CH4 emissions		75	short tons CH4 per trip				
CO2 emissions, to Ireland		78,131	short tons of CO2 per year				
CO2 emissions, to PR		55,669	short tons of CO2 per year				
CH4 emissions, to Ireland		1,157	short tons of CH4 per year				
CH4 emissions, to PR		824	short tons of CH4 per year				
Total CO2 emissions		133,800	short tons of CO2 per year				
Total CH4 emissions		1,981	short tons of CH4 per year				
Total CH4 emissions (20-year GWP)		163,418	short tons of CO2e per year (20 year 0	GWP)			
Total CH4 emissions (100-year GWP)		59,028	short tons of CO2e per year (100 year	GWP)			
Total GHG Emissions (20-year GWP)		297,218	short tons of CO2e per year (20 year 0	GWP)			
Total GHG Emissions (100-year GWP)		192,828	short tons of CO2e per year (100 year	GWP)			

Section C. Sources

Source:	Balcombe, P., D. Heggo, and M. Harrison. June 2022. "Total Methane and CO2 Emissions from Liquefied Natural Gas Carrier Ships: The First Primary Measurements." Environmental Science & Technology. Available at: https://pu							
Notes:								
Description	Value	Units	Notes					
Days at dock/loading:		l day	Balcombe et al, 2022, Section 2.2. Voyage (Page 9633).					
Days sailing from Maine to Belgium:		l6 days	Balcombe et al, 2022, Section 2.2. Voyage (Page 9633).					
Unloading days:		l day	Balcombe et al, 2022, Section 2.2. Voyage (Page 9633).					
Return voyage		14 days	Includes 13 days of travel and 1 day refueling. Balcombe et al, 2022, Section 2.2. Voyage (Page 9633).					
Tonnes of LNG delivered:		67,500 tonnes of LNG delivered to Belgium	Balcombe et al, 2022, Section 2.4. Emissions Modeling (Page 9634).					
CO2 emissions		4600 tonnes CO2	Balcombe et al, 2022, Section 2.4. Emissions Modeling (Page 9634).					
CH4 emissions		68.1 tonnes CH4	This is equivalent to 0.1% of the delivered LNG. Balcombe et al, 2022, Section 2.4. Emissions Modeling (Page 9634).					

Section C2. Supplemental Informatic	Section C2. Supplemental Information for LNG Carrier Ship Example							
Source:	Balcombe, P., D. He	Balcombe, P., D. Heggo, and M. Harrison. June 2022. "Total Methane and CO2 Emissions from Liquefied Natural Gas Carrier Ships: The First Primary Measurements: Supplemental Information." Environmental Science & Technology						
Notes:								
Description	Value	Units	Notes					
Distance Traveled		20210.7 km	Round trip distance, less distance traveled before loading.					

Regasification Facility

This sheet calculates the GHG emissions related to foreign regasification of LNG that passed through the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions Or		Ongoing Emissions	Total Emissions	
	units	S	Short tons of CO2e/year	Short tons of CO2e/year	
Regasification Facility, 20-year GWP		0	115,642	115,642	
Regasification Facility, 100-year GWP		0	112,976	112,976	
No upfront emissions were calculated, under the assumption that the infrastructure is already bu					

Section B. Data and Calculations

Section BI. Natural Gas Throughput				
Description	Value	Units	Notes	Source
Amount of natural gas regasified		128 bcf/year		

Section B2. Everett LNG Terminal Average Emission Rates						
	CO2	CH4	N2O			
Derived Emissions Rate (Metric Tons of GHG / mmcf)		0.79	3.59E-04	I.46E-06		
Derived Emissions Rate (short tons GHG / mmcf)		0.87	3.95E-04	1.61E-06		

Section B3. Scaled Regasification Emissions							
	CO2	CH4	N2O		Total CO2e		
Total Emissions (short tons GHG)		111,412	50.59	0.21	N/A		
Total Emissions (short tons CO2e, 20-year GWP)		111,412	4,174	56	115,642		
Total Emissions (short tons CO2e, 100-year GWP)	111,412	1,508	56	112,976		

Section C. Sources

Section CI. LNG Ship	oment Data for Everett l	NG Terminal						
Source:	US En	vironmental Protection Agen	cy. "Distrigas of Massachusetts	s LLC." GHG Data. Availat	le at: https://ghgda	ta.epa.gov/ghgp/se	ervice/facilityDeta	il/2020?id=1003
Notes:	The E	verett LNG Terminal in Evere	ett, MA is used to scale the Re	egasification emissions, bec	ause the facility is i	elatively similar i	n size capacity of	the Gibbstown
	Report	ed GHG Emissions from EPA Fa	cility Level Data Tool, Departme	nt of Energy.				
Yea	r 🎝	Innual LNG Imports (MMCF)	CO2 (metric tons)	CH4 (metric tons)	N2O (metric tons)	CO2 (metric tons/mmcf)	CH4 (metric tons/mmcf)	N2O (metrio tons/mmcf)
	2011	135,278	112,929	25	0.211	0.83	I.86E-04	1.56E-(
	2012	86,609	71,522	19	0.133	0.83	2.22E-04	I.54E-
	2013	63,987	49,242	21	0.091	0.77	3.31E-04	I.42E-0
	2014	28,825	17,728	13	0.032	0.62	4.54E-04	1.11E-(
	2015	49,683	34,859	13	0.063	0.70	2.68E-04	I.27E-
	2016	69,928	58,241	24	0.109	0.83	3.45E-04	I.56E-

2017	63,936	53,771	16	0.101	0.84	2.48E-04	1.58E-06
2018	50,636	41,210	18	0.079	0.81	3.62E-04	I.56E-06
2019	35,406	29,912	14	0.055	0.84	4.08E-04	1.55E-06
2020	29,396	23,787	12	0.044	0.81	4.17E-04	I.50E-06
2021	21,423	17,132	15	0.031	0.80	7.03E-04	I.45E-06

Foreign Transport to Combustion Facility

This sheet calculates the GHG emissions related to transporting natural gas via pipeline from a foreign regasification facility to an end use combustion site, for gas that passed through the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	units	short tons CO2e (20 year GWP)	short tons CO2e (20 year GWP)
Foreign Transport to Combustion Facility, 20-	0	7,208	7,208
Foreign Transport to Combustion Facility, 100	0	2,604	2,604

No upfront emissions were calculated, under the assumption that the infrastructure is already built.

Section B. Data and Calculations

Section BI. Natural Gas Throughput							
Description	Value	Units	Notes	Source			
Amount of natural gas transported		128 bcf/year					

Section B2. Processing and Transmission Emissions Factors							
Description	Value	Units	Notes	Source			
Processing emissions per facility		3,173 kg CH4/facility	Littlefield et al., 2019.				
Processing throughput per facility		33.6 Bcf/facility-year	Littlefield et al., 2019.				
Transmission emissions per throughput	I.8 kg CH4/MMscf NG dehydrated			Littlefield et al., 2019.			
Transmission emissions per mile		1,120 kg CH4/mile		Littlefield et al., 2019.			

Section B3. Pipeline Emissions					
Description	Value	Units	Notes	Source	
Miles of transmission in Ireland		40 miles	This assumes tra	nsmission of the natural gas from a coastal import to	erminal to the a nearby power plant in Ireland.
Miles of transmission in Puerto Rico		20 miles	This assumes tra	nsmission of the natural gas from a coastal import to	erminal to a nearby power plant in Puerto Rico
Miles of transmission:		60 miles			
Transmission emissions		67,200 kg CH4			
Transmission emissions		74 short tons CH4	4		
Transmission emissions		6,109 short tons CO2	2e (20 year)		
Transmission emissions		2,207 short tons CO2	2e (100 year)		

Section B4. Processing Emissions							
Description	Value		Units	Notes	Source		
Processing/Pneumatics Emissions		3.81	facilities used/year				
Processing/Pneumatics Emissions		12,088	kg CH4 / year				
Processing/Pneumatics Emissions		13	short tons CH4				
Processing/Pneumatics Emissions		1,099	short tons CO2e (20 year)				
Processing/Pneumatics Emissions		397	short tons CO2e (100 year)				

Section C. Sources

Section CI. Source for Exhibit 3-16. GHGI Emission and Activity Factors and Corresponding Natural Gas Throughput

Source: Notes: Littlefield, J., S. Roman-White, D. Augustine, A. Pegallapati, G. G. Zaimes, S. Rai, G. Cooney, and T. J. Skone. April 2019. "Life Cycle Analysis of Natural Gas Extraction and Power Generation." Nationa

Exhibit 3-16. GHGI Emission and Activity Factors and Corresponding Natural Gas Throughput

					Emissions			Natural Ga	s Throughput
Stage (or substage)	Emission Source	Vent	Fugitive	GHGI Emission Factor	nits (annualize	Activity Factor	Units	Throughput	Units
	Well drilling	•		52	H4/completed	*	completed well	EUR*	Bcf/well-life
	Compressor blowdowns	•		77	; CH4/compress	0.078 *	ompressors/we າ wells		Mcf/basin-yr
Production	PRV (pressure relief valve) upsets	•		0.70	kg CH4/PRV	2.4 *	PRV/well ו wells	nual productio	Mcf/basin-yr
	Vessel blowdowns	•		1.6	kg CH4/vessel	0.93 *	vessels/well າ wells	nual productio	Mcf/basin-yr
Gathering	Mishaps	•		14	kg CH4/mile	81 0.67	wells/facility າ miles/well	nual productio	Mcf/basin-yr
Processing	Pneumatics	•		3,173	kg CH4/facility kg	1	facilities	33.6	Bcf/facility-yr
Transmission	Dehydrator vents	•		1.8	CH4/MMscf NG	1.19E+06	MMscf NG	28.2	Tcf transmission
Transmission Pipeline	Pipeline fugitives		•	1,120	dehvdrated kg CH4/mile	301,257	miles	28.2	Tcf transmission
Storage	Dehydrator vents	•		2.3	kg CH4/MMscf dehvdrated	1.85E+06	Mscf dehydrati	9.24	Tcf capacity
	Station venting	•		84,000	kg CH4/station	*	f station capac	9.24	Tcf capacity
	Customer meters (residential)		•	1.5	kg CH4/meters	5.43E+07	meters	13.9	Tcf distributed
	Customer meters (commercial/industrial)		•	9.7	kg CH4/meter	5.66E+06	meters	13.9	Tcf distributed
Distribution	PRV (pressure relief valve) upsets	•		1.00	kg CH4/mile	1.28E+06	miles	13.9	Tcf distributed
	Pipeline blowdowns	•		2.00	kg CH4/mile	2.19E+06	miles	13.9	Tcf distributed
	Mishaps (dig ins)	•		31	kg CH4/mile	2.19E+06	miles	13.9	Tcf distributed

* In some instances, throughput is variable across basins and extraction technologies. This variability is based on NETL's stratification of the data by basins and extraction

technologies. Variability in activity factors are based on stratification of GHGRP data as shown in Exhibit 3-8 through Exhibit 3-15, and variability in natural gas throughputs are

based on stratification of DI Desktop data.

Combustion Facility

This sheet calculates the GHG emissions related to end use natural gas combustion for gas that passed through the Gibbstown LNG Export Terminal.

Section A. Results Table

	Upfront Emissions	Ongoing Emissions	Total Emissions
	units	Short Tons of CO2e	Short Tons of CO2e
Combustion Facility, 20-year GWP	0	7,685,521	7,685,521
Combustion Facility, 100-year GWP	0	7,677,865	7,677,865

No upfront emissions were calculated, under the assumption that the infrastructure is already built.

Section B. Data and Calculations

Section BI. Natural Gas Throughput				
Description	Value	Units	Notes	Source
Amount of natural gas combusted		128 bcf/year		

Section B2. Emissions Calculations for End Use Combustion									
Pollutant		Emissions Rate (kg of Tota	Emissions Rate (kg of Total Emissions (kg of		Total Emissions Total Emissions (kg of		Total Emissions		
		GHG/scf)	GHG)	(kg of CO2e, 20-	CO2e, 100-year GWP)	(short tons of	(short tons of		
CO2		0.0544	6,963,200,000	6,963,200,000	6,963,200,000	7,673,446	7,673,446		
CH4		0.000001030	131,840	10,876,800	3,928,832	11,986	4,330		
N2O		0.0000	294	80,371	80,371	89	89		
Total CO2e						7,685,521	7,677,865		

Section C. Sources

Section CI. Emissions Factors for GHGs from Natural Gas Combustion					
Source:	US Environmental F	US Environmental Protection Agency. January 2016			
Notes:	Table A-1: Emission	Table A-1: Emission Factors for Equation 1 (EF1) -			
Pollutant	Units	Units Emissions Rate			
CO2	kg CO2/scf	0.05			
CH4	g CH4/scf	0.00103			
N2O	g N2O/scf	0.0000023			